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Abstract—Unknown parameters cause difficulties in the con-
trol of permanent magnetic motors. Particular techniques are
requested to be able to achieve an appropriately controlled
dynamics identification. A geometric approach for achieving a
decoupling of the system is applied in the presented strategy.
The decoupling makes the estimation of the Permanent Magnet
Synchronous Motor (PMSM) parameters easier. A feedback
controller in combination with the feed-forward controller being
generated by an input partition, achieves the decoupling. This
can be applied to various types of motors or systems in case
of the decoupling conditions being satisfied. A control together
with the identification method is tested in the simulation section.
The presented simulation and measured results are shown for
validation of the strategy which is proposed.

Index Terms—Permanent Magnet Synchronous Motor, Identi-
fication, PWM control

I. INTRODUCTION AND MOTIVATIONS

REcently the interest in the topic of geometric control has
increased in theoretical aspects and applications as well,

see for instance [1], particulary in control problems like Non-
interaction and Model Predictive Control, see [2]. It is known
that, an accurate knowledge of the model and its parameters
is necessary for realising an effective control. For achieving
a desired system performance, advanced control systems are
usually required to provide fast and accurate response, quick
disturbance recovery and parameter variations insensitivity [3].
Acquiring accurate models for systems under investigation
is usually the fundamental part in advanced control system
designs, see [4]. In [4] a Permanent Magnet Synchronous
Motor (PMSM) is considered with a PI controller. A chopper
strategy is proposed and a parameter set up of the above
mentioned PI-regulator is proposed to obtain a smooth tracking
dynamics even though a chopper control structure is included
in the drive. High performance application of permanent
magnet synchronous motors (PMSM) is increasing. In par-
ticular, application in electrical vehicles is very much used.
The existing applications chopper control structures are very
popular because they are very cheep and easy to be realised.
Nevertheless, using a chopper control structure smooth track-
ing dynamics could be difficult to obtain without increasing the
switching frequency because of the discontinuity of the control
signals. No smooth tracking dynamics lead to a not comfort-
able travel effect for the passengers of the electrical vehicle.
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PMSMs as traction motors are common in electric or hybrid
road vehicles and they importance will increase in the future
because of the dissemination of electrical mobility. Moreover,
in electrical mobility the control strategies, connected with an
optimal energy management, represent a decisive point for the
success of effective technologies and products, [5]. PMSMs
have, in term of control, already consolidated methods and
techniques. For rail vehicles, PMSMs as traction motors are
not widely used yet. Although the traction PMSM can bring
many advantages, just a few prototypes of vehicles were built
and tested. The next two new prototypes of rail vehicles with
traction PMSMs were presented on InnoTrans fair in Berlin
2008 Alstom AGV high speed train and skoda Transportation
low floor tram 15T ForCity. Advantages of PMSM are well
known. The greatest advantage is low volume of the PMSM in
comparison with other types of motors. It makes a direct drive
of wheels possible. On the other hand, the traction drive with
PMSM has to meet special requirements typical for overhead
line fed vehicles.

The most common parameters required for the
implementation of such advanced control algorithms are
the classical simplified model parameters: Ld - the direct
axis self-inductance, Lq - the quadrature axis self-inductance,
and Φ - the permanent magnet flux linkage. Techniques
have been proposed for the parameters’ identification of a
PMSM from different perspectives, such as offline [6], [7]
and online identification of PMSM electrical parameters,
[8]. These techniques are based on the decoupled control
of linear systems when the motor’s mechanical dynamics
are ignored. Using a decoupling control strategy, internal
dynamics may be almost obscured, but it is useful to
remember that there are no limitations in the controllability
and observability of the system. In the report by [9] a
decoupling technique is used to control a permanent magnets
machine more efficiently in a sensorless way using an
observer. Despite limitations on the frequency range of
identification, this paper proposes a dynamic observer based
on a geometric decoupling technique to estimate parameter
Φ. The proposed identification technique, similar to that
presented in [10], applies a procedure based on the work
in [11]. In the meantime, the paper proposes a particular
observer that identifies the permanent magnet flux using
the estimated Ldq and Rs parameters from an ARMA
identification structure as presented in [11]. The paper is
organised in the following way: a sketch of the model
of the synchronous motor and its behaviour are given in
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Section II, Section III is devoted to deriving, proposing and
discussing the dynamic estimator, and Section IV shows
the simulation results using real data for a three-phase PMSM.

The main nomenclature
uin(t) = [ua(t), ub(t), u0(t)]

T : three phase input
voltage vector
i(t) = [ia(t), ib(t), i0(t)]

T : three phase input
current vector
uq(t): induced voltage vector
ωel: electrical pulsation
Rs: coil resistance
Ldq: dq coil inductance
A: state matrix of the electrical model
B: input matrix of the electrical model
B = imB: image of matrix B (subspace spanned
by the columns of matrix B)
minI(A,B) =

∑n−1
i=0 AiimB: minimum A–

invariant subspace containing im(B)
F: decoupling feedback matrix field
g(ωel): Park transformation
T(ωel): decoupling feedforward matrix field
I: invariant subspace
Cd: kernel of output matrix Cd (d component of
the current)
Cq: kernel of output matrix Cq (q component of
the current)
C0: kernel of output matrix C0 (0 component of
the current)

II. MODEL OF A SYNCHRONOUS MOTOR

For aiding advanced controller design for PMSM, it is very
important to obtain an appropriate model of the motor. A
good model should not only be an accurate representation of
system dynamics but it should also facilitate the application
of the existing control techniques. Among a variety of models
presented in the literature since the introduction of PMSM,
the two-axis dq-model, obtained using Park dq-transformation
is the most widely used in variable speed PMSM drive
control applications [3] and [8]. The Park dq-transformation
is a coordinate transformation that converts the three-phase
stationary variables into variables in a rotating coordinate
system. In dq-transformation, the rotating coordinate is defined
relative to a stationary reference angle as illustrated in Fig. 1.
The dq-model is considered in this work.[
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Fig. 1. Park transformation for the motor

The dynamic model of the synchronous motor in dq-
coordinates can be represented as follows:[

did(t)
dt

diq(t)
dt

]
=

[
−Rs

Ld

Lq

Ld
ωel(t)

−Rs

Lq
−Ld

Lq
ωel(t)

][
id(t)
iq(t)

]
+[

1
Ld

0

0 1
Lq

][
ud(t)
uq(t)

]
−

[
0

Φωel(t)
Lq

]
, (3)

and
Mm =

3

2
p{Φiq(t) + (Ld − Lq)id(t)iq(t)}. (4)

In (3) and (4), id(t), iq(t), ud(t) and uq(t) are the dq-
components of the stator currents and voltages in syn-
chronously rotating rotor reference frame, ωel(t) is the rotor
electrical angular speed, the parameters Rs, Ld, Lq , Φ and
p are the stator resistance, d-axis and q-axis inductance, the
amplitude of the permanent magnet flux linkage, and p the
number of couples of permanent magnets, respectively. At the
end, Mm indicates the motor torque. Considering an isotropic
motor with Ld ≃ Lq = Ldq , it follows:[

did(t)
dt

diq(t)
dt

]
=

[
− Rs

Ldq
ωel(t)

− Rs

Ldq
ωel(t)

] [
id(t)
iq(t)

]
+

[
1

Ldq
0

0 1
Ldq

][
ud(t)
uq(t)

]
−

[
0

Φωel(t)
Ldq

]
, (5)

and
Mm =

3

2
pΦiq(t), (6)

with the following movement equation:

Mm −Mw = J
dωmec(t)

dt
, (7)

where pωmech(t) = ωel(t) and Mw is an unknown mechanical
load.
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III. DESIGN OF A DECOUPLING CONTROL STRATEGY

The present estimator uses the measurements of input volt-
ages, currents and angular velocity of the motor to estimate the
”dq” winding inductance, the rotor resistance and amplitude
of the linkage flux. The structure of the estimator is described
in Fig. 2. This diagram shows how the estimator works. In
particular, after having decoupled the system described in (5),
the stator resistance Rs and the inductance Ldq are estimated
through a minimum error variance approach. The estimated
values R̂s and L̂dq are used to estimate the amplitude of
the linkage flux (Φ̂). The earliest geometric approaches to

Fig. 2. Conceptual structure of the whole estimator

decoupling control were due to [12] and to [13] and [14].
The following definition taken from [12] recalls the concept
of decoupling.

Definition 1: A control law for the dynamic system
described by (1), (2) and (3) is decoupling with respect to
the regulated outputs id(t), iq(t), and io(t), if there exist a
feedback matrix field F(ωel) and input partition matrix field
T(ωel)) = [Td,Tq,T0]

T of the input voltage vector such
that for zero initial conditions, each input u( · )(t) (with all
other inputs, identically zero) only affects the corresponding
output id(t), iq(t), or io(t). �

For achieving a decoupled structure of the system described
in Eq. (5), a matrix field F(ωel) is to be calculated such that:

(A+BF(ωel))V ⊆ V, (8)

where u(t) = F(ωel)x(t) is a state feedback with
u(t) = [ud(t), uq(t)]

T and x(t) = [id(t), iq(t)]
T ,

A =

[
− Rs

Ldq
ωel(t)

− Rs

Ldq
ωel(t)

]
, B =

[ 1
Ldq

0

0 1
Ldq

]
, (9)

and V = im([0, 1]T ) of Eq. (8), according to [12], is a
controlled invariant subspace. More explicitly it follows:

F(ωel) =

[
F11 F12

F21 F22

]
, and

[
ud(t)
uq(t)

]
=

F(ωel)

[
id(t)
iq(t)

]
,

then the decoupling of the dynamics is obtained via the
following relationship:

im

([
− Rs

Ldq
ωel(t)

− Rs

Ldq
ωel(t)

])
+

im

([
1

Ldq
0

0 1
Ldq

][
F11 F12

F21 F22

] [
0
1

])
⊆ im

[
0
1

]
,

(10)

where parameters F11, F12, F21, and F22 are to be calculated
in order to guarantee condition (10) and a suitable dynamics
for sake of estimation. Condition (10) is guaranteed if:

F12 = −ωel(t)Ldq. (11)

did(t)

dt
= − Rs

Ldq
id(t) +

ud(t)

Ldq
, (12)

Considering now the following output matrix:

C =

[
1 0
0 1

]
=

[
Cd

Cq

]
. (13)

It is to be shown that, if:

g(ωel) =

 2 sin(ωelt)
3

2 sin(ωel−2π/3)
3

2 sin(ωel+2π/3)
3

2 cos(ωelt)
3

2 cos(ωel−2π/3)
3

2 cos(ωel+2π/3)
3

1
3

1
3

1
3

 ,

(14)
then there exists a decoupling and stabilizing state feedback
matrix field F(ωel), along with two input partition matrix
fields Td(ωel), Tq(ωel), and Tc(ωel) such that, for the
dynamic triples

(Cd, A+BF(ωel)), g(ωel)Td) ,
(Cq, A+BF(ωel)), g(ωel)Tq) ,

(15)

it holds the following conditions:

Rd(ωel) = minI
(
A+BF(ωel), g(ωel)Td(ωel)

)
⊆ Cq ∀ωel,

(16)
and

CdRd(ωel) = im(Cd), ∀ωel. (17)

Rq(ωel) = minI
(
A+BF(ωel), g(ωel)Tq(ωel)

)
⊆ Cd ∀ωel,

(18)
and

CqRq(ωel) = im(Cq), ∀ωel. (19)

Here,

minI(A, im(BF)) =
n−1∑
i=0

Aiim(B)

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 9, 2015

ISSN: 1998-4464 3



is a minimum A–invariant subspace containing im(B). More-
over, the partition matrix fields Td(ωel), Tq(ωel) and T0(ωel)
satisfy the following relationships:

im(g(ωel) ·Td(ωel)) = im(g(ωel)) ∩Rd(ωel),
im(g(ωel) ·Tq(ωel)) = im(g(ωel)) ∩Rq(ωel).

(20)

The stabilizing matrix field F(ωel) is such that:

(A+BF(ωel))Rd(ωel) ⊆ Rd(ωel), (21)

and
(A+BF(ωel))Rq(ωel) ⊆ Rq(ωel). (22)

Considering

T(ωel) = [Td(ωel),Tq(ωel),T0(ωel),Tc(ωel)],

where Tc(ωel) is defined in a complementary fashion and it is
straightforward to show that matrix field Tc = 0. In particular,
matrix field Tc represents the complementary matrix field
partition to the subspaces of d-coordinate, q-coordinate and 0-
coordinate. The system is described using just three variables,
therefore partition fields Td(ωel) and Tq(ωel) complete the
transformation and thus Tc = 0.

imT(ωel) = im[Td(ωel),Tq(ωel),T0(ωel)] =

imTd(ωel)⊕ imTq(ωel)⊕ imT0(ωel). (23)

Considering the output matrix (13) corresponding to d-
coordinate, q-coordinate and 0-coordinate, their respective
kernels are as follows:

Cd = im

[
0 0
1 0

]
, Cq = im

[
1 0
0 0

]
. (24)

According to definition B of Eqs. (9) it is straightforward to
observe that the following three equations hold ∀ ωel:

im(B) ∩ Cq ̸= 0, (25)

im(B) ∩ Cd ̸= 0. (26)

The following calculations allow to get the required fields for
the decoupling of the system:

Td(ωel) = (g(ωel))
† · im(B) ∩ Cq, (27)

Tq(ωel) = (g(ωel))
† · im(B) ∩ Cd. (28)

Field g(ωel) is a function of ωel without singularities if
ωel(t) ̸= kπ with k ∈ N, where with (g(ωel))

† the pseudo
inverse of field g(ωel) is indicated. Adding all 3 T-Fields
together, we get a new field T(ωel):

T(ωel) = Td(ωel) +Tq(ωel). (29)

Field T(ωel) can be seen as a preselecting field and the
following product realises the mechanical decoupling:

B = im(g(ωel)T(ωel)) = im

[
1 0
0 1

]
, (30)

in which matrix B can be seen as a resulting input matrix.

A. A dynamic estimator of Φ

As it is shown in Fig. 2, parameters Rs and Ldq can be
estimated by using an ARMA identification structure. These
two values are needed to estimate flux Φ. If the electrical part
of the system ”q” and ”d” axes is considered, then, assuming
that ωel(t) ̸= 0, iq(t) ̸= 0, and id(t) ≠ 0, the following
equation can be considered:

Φ(t) = −
Ldq

diq(t)
dt +Rsid(t) + Ldqωel(t)iq(t)− uq(t)

ωel(t)
. (31)

Consider the following dynamic system:

dΦ̂(t)

dt
= −KΦ̂(t)−

K
( L̂dq

diq(t)
dt + R̂sid(t)

ωel(t)
+

L̂dqωel(t)iq(t) + uq(t)

ωel(t)

)
, (32)

where K is a function to be calculated. Eq. (32) represents the
estimators of Φ and L̂dq and R̂s represent the estimated in-
ductance and resistance respectively by an ARMA procedures
in [11]. If the error functions are defined as the differences
between the true and the observed values, then:

eΦ(t) = Φ(t)− Φ̂(t), (33)

and
deΦ(t)

dt
=

dΦ(t)

dt
− dΦ̂(t)

dt
. (34)

If the following assumption is given:

∥dΦ(t)
dt

∥ << ∥dΦ̂(t)
dt

∥, (35)

then in Eq. (34), the term dΦ(t)
dt is negligible. Using Eq. (32),

Eq. (34) becomes

deΦ(t)

dt
= KΦ̂(t)+

K
( L̂dq

diq(t)
dt + R̂sid(t)

ωel(t)
+

L̂dqωel(t)iq(t) + uq(t)

ωel(t)

)
. (36)

Because of Eq. (31), (36) being able to be written as follows:

deΦ(t)

dt
= KΦ̂(t)−KΦ(t),

and considering (33), then:

deΦ(t)

dt
+KΦ(t) = 0. (37)

K can be chosen to make Eq. (37) exponentially stable. To
guarantee exponential stability, K must be

K > 0.

To guarantee ∥dΦ(t)
dt ∥ << ∥dΦ̂(t)

dt ∥, then K >> 0. The
observer defined in (32) suffers from the presence of the
derivative of the measured current. In fact, if measurement
noise is present in the measured current, then undesirable
spikes are generated by the differentiation. The proposed
algorithm must cancel the contribution from the measured
current derivative. This is possible by correcting the observed
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velocity with a function of the measured current, using a
supplementary variable defined as:

η(t) = Φ̂(t) +N (iq(t)), (38)

where N (iq(t)) is the function to be designed.
Consider

dη(t)

dt
=

dΦ(t)

dt
+

dN (iq(t))

dt
(39)

and let

dN (iq(t))

dt
=

dN (iq)

diq(t)

diq(t)

dt
=

KL̂dq

ωel(t)

diq(t)

dt
. (40)

The purpose of (40) is to cancel the differential contribution
from (32). In fact, (38) and (39) yield, respectively:

Φ̂(t) = η(t)−N (iq(t)), and (41)

dΦ̂(t)

dt
=

dη(t)

dt
− dN (iq(t))

dt
. (42)

Substituting (40) in (42) results in:

dΦ̂(t)

dt
=

dη(t)

dt
− KL̂dq

ωel(t)

diq(t)

dt
. (43)

Inserting Eq. (43) into Eq. (32), the following expression is
obtained:

dη(t)

dt
− KL̂dq

ωel(t)

diq(t)

dt
= −KΦ̂(t)−

K
( L̂dq

diq(t)
dt + R̂sid(t)

ωel(t)
+

L̂dqωel(t)iq(t) + uq(t)

ωel(t)

)
, (44)

then:

dη(t)

dt
= −KΦ̂(t)−K

(
R̂sid(t) + L̂dqωel(t)iq(t) + uq(t)

)
ωel(t)

.

(45)
Letting N (iq(t)) = kappiq(t), where a parameter has been
indicated with kapp, then from (40) ⇒ K =

kappωel(t)

L̂dq
, and

Eq. (41) becomes:

Φ̂(t) = η(t)− kappiq(t). (46)

Finally, substituting (46) in (45) results in the following
equation:

dη(t)

dt
= −kappωel(t)

L̂dq

(
η(t)− kappiq(t)

)
+

kapp

L̂dq

(
R̂sid(t) + L̂dqωel(t)iq(t) + uq(t)

)
,

Φ̂(t) = η(t)− kappiq(t). (47)

Using the implicit Euler method, the following velocity ob-
server structure is obtained:

η(k) =
η(k − 1)

1 + ts
kappωel(k)

L̂dq

+

ts
k2
appωel(k)iq(k)

L̂dq
+ kappωel(k)iq(k) +

tsR̂skappid(k)

L̂dq

1 + ts
kappωel(k)

L̂dq

iq(k)+

ts
kapp

L̂dq

1 + ts
kappωel(k)

L̂dq

uq(k),

Φ̂(k) = η(k)− kappiq(k), (48)

where ts is the sampling period.

Remark 1: Assumption (35) states that the dynamics of the
approximating observer should be faster than the dynamics of
the physical system. This assumption is typical for the design
of observers. �

Remark 2: The estimator of Eq. (48) presents the
following limitations: for low velocity of the motor
(ωmec.(t) << ωmecn(t)), where ωmecn(t) represents the
nominal velocity of the motor), the estimation of Φ becomes
inaccurate. Because of ωel(t) dividing the state variable
η, the observer described by (48) becomes hyperdynamic.
Critical phases of the estimation are the starting and ending
of the movement. Another critical phase is represented by
a high velocity regime. In fact, it has been proven through
simulations, that if ωmec(t) >> ωmecn(t), then the observer
described by (48) becomes hypodynamic. According to the
simulation results, within some range of frequency, this
hypo-dynamicity can be compensated by a suitable choice of
kapp. �

Remark 3: The Implicit Euler method guarantees the
finite time convergence of the observer for any choice of
kapp. Nevertheless, any other method can demonstrate the
validity of the presented results. Implicit Euler method is a
straightforward one. �

IV. SIMULATION AND MEASURED RESULTS

The results have been achieved using a special stand with a
58-kW traction PMSM. The stand consists of a PMSM, a tram
wheel and a continuous rail. The PMSM is a prototype for low
floor trams. The PMSM parameters are: nominal power of 58
kW, nominal torque of 852 Nm, nominal speed of 650 rpm,
nominal phase current of 122 A, nominal input voltage of 230
V and the number of poles is 44. The model parameters are:
R = 0.08723 Ohm, Ldq = Ld = Lq = 0.8 mH, Φ = 0.167
Wb. The engine has a nominal power of 55 kW, a nominal
voltage of 380 V and nominal speed of 589 rpm. Figure 4
shows the estimation measured results of Φ magnet flux. From
these figures, the effect of the limit of the procedure discussed
in remark 2 is visible at the beginning of the estimation. In
particular, this effect is visible in the real measured results.
Figure 6 shows a detail of the estimation of the measured
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Fig. 3. Simulated results: Estimated and real values of the permanent magnet
flux linkage for kapp = 20
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Fig. 4. Measured results

magnetic flux of the motor. In order to recall this effect, it is
useful to say that the critical phases of the estimation are the
starting and ending of the movement. Another critical phase
is represented by a high velocity regime. In fact, it has been
proven through simulations and measured results, so that if
ωmec(t) >> ωmecn(t), then the observer described by (48)
becomes hypodynamic. Figure 5 shows the angular velocity
of the motor. In the present simulations, t = 0 corresponds to
ωel(t) = 0.

Using a control structure of [15] with PWM frequency
equals 100kHz the same results as in [15] are obtained. Figure
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Fig. 5. Detail of the estimation of the measured magnetic flux
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Fig. 6. Angular velocity

7 shows the obtained and desired motor velocity profiles.
Figure 8 shows the obtained and desired motor acceleration
profiles. From these two results it is possible to remark that the
effect of the chopper control is visible which does not allow the
tracking to be precise. Figure 9 shows PWM signal sequence
with the maximal chopper switching frequency equals 2.5kHz.
Fig. 10 shows the chopper effect on the input of the motor.

V. CONCLUSIONS AND FUTURE WORK

This paper considers a decoupling dynamic estimator for
fully automated parameters identification for three-phase syn-
chronous motors. The proposed strategy uses the geometric
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approach to realised a decoupling of the system. The esti-
mation of the parameters of the motor is simplified through
a decoupling. The decoupling is realised using a feedback
controller combined with a feedforward one. The feedforward
controller is conceived through an input partition matrix.
The proposed dynamic estimator is shown to identify the
amplitude of the linkage flux using the estimated inductance
and resistance. Through simulations and measured results on
a synchronous motor used in automotive applications, this
paper verifies the effectiveness of the proposed method in
identification of PMSM model parameters and discusses the
limits of the proposed procedure. Simulation and measured
results are reported to validate the proposed strategy. Future
work includes the estimation of a mechanical load and the
general test of the present algorithm using a real motor.
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